Code:
ubu@raspberrypi:~ $ ubu@raspberrypi:~ $ wolframMathematica 14.1.0 Kernel for Linux ARM (64-bit)Copyright 1988-2024 Wolfram Research, Inc.In[1]:= PerfectNumber[5]Out[1]= 33550336In[2]:= PerfectNumber[15]Out[2]= 54162526284365847412654465374391316140856490539031695784603920818387206994158534859198999921056719921919057390\> 08026364615928001382760543974626278890305730344550582702839513947520776904492443149486172943511312628083790493046\> 27406817179604658673487209925721905694655452996299198234310310926242444635477896354414813917198164416055867880921\> 47886677321398756661624714551726964302217554281784254817319611951659855553573937788923405146222324506715979193757\> 37282086087821432205222758453755289747625617939517662442631448031344693508520365758479824753602117288040378304860\> 28736212593137899949003366739415037472249669840282408060421086900776703952592318946662736152127756035357647079522\> 50173858305171028603021234896647851363949928904973292145107505979911456221519899345764984291328In[3]:= PerfectNumber[25]
It looks like x cannot be more than 20 in PerfectNumber[x] in the Wolfram code used. For projects on the Raspberry Pi focused on extracting 'Perfect Numbers', using Rust or other compiled, high-performance languages will yield better results than using rPi Mathematica for computationally intensive tasks.
Statistics: Posted by geev03 — Fri Nov 15, 2024 8:52 pm — Replies 0 — Views 39